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Optimizing time-COnstrained multi-ObjeCtive prOCess parameters  
fOr thin-Walled maraging steels manufaCtured by laser pOWder bed fusiOn (lpbf)

additive manufacturing is an innovative manufacturing process that enables complex topological structures and low-volume, 
high-variety production. one of the major adaptations of this method is in the tire industry. Thin-walled sipes slit the tires to improve 
drainage and traction. The material properties of thin-walled structures manufactured by additive manufacturing are different and 
more sensitive than those of conventional cube-shaped specimens. Thin-walled maraging steel specimens are considered to be able 
to model the relationship between the process parameters and the properties of the sipes adequately. Tire sipes are made of maraging 
steel. Maraging steels are a class of low-carbon high-alloy martensitic steel generally providing high strength, ductility, and good 
fracture toughness. in particular, these alloys exhibit a good combination of strength and toughness at elevated temperatures, which 
has been desirable for applications in aerospace and tooling. in order to consider productivity, multi-objective process parameter 
optimization with a build-time-constrained model is proposed.
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1. introduction

additive manufacturing creates new trends in the manufac-
turing industry and enables the realization of items not possible 
to create with traditional methods. Many companies in various 
fields, including the aerospace, automotive, and medical indus-
tries, are starting to adopt additive manufacturing to increase their 
productivity [1]. each product requires its own process window 
for the new additive manufacturing system prior to actual mass 
production. in additive manufacturing, dozens of input process 
parameters affect the resulting material properties [2]. however, 
the relationship between the input parameters and the output 
material properties cannot be explicitly expressed. Many stud-
ies have proposed data-driven models to find optimal process 
parameters for their target material properties [3-5]. The relative 
density value is the most important factor, as it indicates whether 
the product will be formed well. existing studies have considered 
cube-shaped coupons for creating test additive manufacturing 
samples [6-8]. This study focuses on tire sipes, and because tire 
sipes are considered as final products, thin-walled specimens 
are adopted in this study. There are several ways to obtain the 
density value, but the archimedes method is the most popular due 

to its simplicity. however, the archimedes approach is sensitive 
to environmental factors, such as the types and temperatures of 
any liquids involved, and the shape of the coupon [9]. For ad-
ditively manufactured samples, the archimedes density values 
for thin-walled specimens and cubes are different. Therefore, 
thin-walled specimens require a new process map [10]. 

The role of the sipe is to make a thin slit in the rubber tire 
to improve drainage and increase tire traction. Maraging steel 
(MS1) with excellent strength and toughness is used for tire 
sipes. Because the sipe must withstand high pressure during the 
pressing process, it must have high density and good strength. in 
order to maximize durability and productivity, the density and 
strength are set as objective functions and the build time is set 
as a constraint. The present work is dedicated to the construc-
tion of a time-constrained multi-objective optimization model 
for lPBF process parameters.

2. experimental 

Tire sipes are made of maraging steel (MS1) due to their 
high strength requirements [11]. The specimens in the present 
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work were built using an eoS290 device with maraging steel 
(MS1) powder. TaBle 1 shows the chemical composition 
of the MS1 powder. The powder particle size distribution 
is 18 µm, 35 µm, and 54 µm for D10, D50, and D90, respectively 
[12,13]. Fig. 1(a) shows a specimen printed with dimensions of 
50 mm×1 mm×20 mm. Using this coupon, dog-bone-shaped 
tensile specimens for a strength test were fabricated, as shown in 
Fig. 1(b). The archimedes method is used for the density data and 
a 25 kn universal testing machine is used for the strength data. 
Tensile stress-strain curves are obtained at room temperature and 
a displacement rate of 1mm/min. Using the functions provided by 
eoS290, the time required to build a 100 mm×100 mm×100 mm 
cube was used as the build-time data input parameter.

TaBle 1

Chemical Composition of the MS1 Powder

element ni Co mo ti al si C fe
percent 18.15 9.04 4.81 0.67 0.10 0.011 0.0076 Balance

(a) Printed specimen shape (b) Dog-bone-shaped tensile specimen

Fig. 1. Specimen shape for (a) relative density and (b) tensile strength

Three process parameters are considered: the laser power, 
laser scanning speed, and hatch distance. The laser power range 
is 190 W to 370 W, the laser scanning speed range is 700 to 
1600 mm/s, and the hatch distance and is 0.09 mm to 0.13 mm. 

a stripe scan pattern with 67° rotation from layer to layer is used 
to reduce sample anisotropy. Using latin hypercube sampling 
(lhS), 100 uniformly distributed sample points were extracted, 
as shown in Fig. 2.

3. results and discussion

in order to construct the surrogate model for the relationship 
between the input process parameters and the output material 
properties, gaussian process regression (gPr) is utilized. gPr 
is a probabilistic and non-parametric regression model. The input 
x and output y are expressed as shown below, and ε is the noise, 
which takes the form of a gaussian distribution. 

 y = f (x) + ε 

gPr considers correlations in the training data to represent 
reasonable predictions for new input. in order to predict y* and 
at a new point x*, the gaussian process of training data y is 
needed because y* follows a multi-variate gaussian distribu-
tion, as follows:
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here, k is a kernel function that represents the covariance be-
tween the input x values. 

in this study, 100 training samples were utilized, as shown 
in Fig. 2. The training data values of the density and tensile 
strength are expressed as plots, and the predicted data-driven 
model is expressed as a mesh. Fig. 3 shows the gPr models 
constructed using build-time data provided by eoS290 when 
entering the training data process parameters. gPr models are 
constructed for the relative density, tensile strength, and build-
time training data, respectively.

To optimize these outputs such as relative density and ten-
sile strength while considering building time, the multi-objective 
optimization problem is used. The standard multi-objective 
optimization problem is defined as [14]:

 To minimize c(x) = [c1(x), c2(x),..., ci(x),...,cp (x)]T

 Subject to hm(x) = 0, m = 1,2,...,q

 gn(x) ≤ 0, n = 1,2,...,r

 xLB ≤ x ≤ xUB 

where ci(x) is the i th objective function and p,q, r is the number 
of objective functions, equality constraints, and inequality con-
straints, respectively. in this research, two objective functions, 
such as relative density and tensile strength, and one inequality 
constraint, such as building time, are used. and weighted sum, 

Fig. 2. Design of experiments (Doe) using lhS for collection of train-
ing data 
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one of the methods to define the multi-objective optimization 
problem, is applied to the objective function. Then, the optimi-
zation formulation in this research using gPr surrogate model 
can be shown as follows:

 To minimize w1c̃1(x) + w2 c̃2(x)

 Subject to g̃ (x) ≤ 0

 xLB ≤ x ≤ xUB 

where w1 + w2 = 1, c̃1(x), c̃2(x), and g̃ (x) are gPr surrogate 
models with relative density, tensile strength, and building time, 
respectively. xLB and xUB are the lower and upper bounds of 
input parameters, respectively. as the weight changes, several 
optimal points may exist. To find these optimal points, the Pareto 
optimal set can be used. The Pareto optimal set finds the set of 
the optimal points, changing the weights. Then, we can determine 
the optimal point among these optimal sets [15].

a genetic algorithm (ga) is used to find the optimal input 
process parameters and is based on the natural selection process. 
Fig. 4 shows the proposed data-driven machine learning models 
for the process parameters and the relative density and yield 
stress properties. The proposed models are shown in Fig. 4. 
The proposed surrogate models are shown in Fig. 4 at hatch 
distances of 0.1, 0.11 and 0.12 that takes into account the three 
variables of the laser power, laser scan speed, and hatch distance. 
in general, the lower the speed and hatch distance values are, the 
higher the density and tensile strength levels become, as shown 
in Fig. 4. in Fig. 4, the red points represent several optimized 
points at approximately the lowest laser scan speed, as mentioned 
above. The optimal process parameters are the power of 274 W, 
a laser scan speed of 813 mm/s, a hatch distance of 0.1 mm, and 
a corresponding predicted relative density of 97.6% and yield 
strength of 934 n/mm2. at these optimal values in Fig. 4, the 
energy density values are around 81~74 J/mm3, and these results 
are convincing when compared to other MS1 additive printing 
studies [6]. however, productivity, which is directly related 
to income, is also a major consideration in actual industries. 
Fig. 5 shows the optimal process points with build-time con-

straints at the level of about 70% of the maximum build time. 
optimal process parameters are shifted into the interior design 
area, where the laser scan speed and hatch distance are greater 
compared to those in the unconstrained optimization results, as 
shown in Fig. 5. The optimal process parameters for the time-
constrained model are the power of 256 W, a laser scan speed 
of 1136 mm/s, a hatch distance of 0.1mm and a corresponding 
predicted relative density level of 96.9% and yield strength of 
915 n/mm2. Compared to the unconstrained optimization result, 
the constrained result shows a higher laser scan speed but lower 
density and strength values. given the time constraints, it is 
necessary to ensure that the optimized parameters satisfy the 
target properties of the material.

Based on this proposed time-constrained multi-objective 
surrogate model, users can find their own process parameters 
taking into account the target material properties and economic 
margin.

4. Conclusions

additive manufacturing is changing the face of the manu-
facturing industry at present because it is advantageous for shape 
representation and enables high-variety low-volume production. 
however, the primary considerations of industry are meeting 
material specifications and high productivity. The proposed 
method presents a surrogate model for obtaining optimal pro-
cess parameters that satisfy material property requirements and 
build-time constraints.
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Fig. 3. gPr model predictions between the input process parameters and build-time at hatch distances of (a) 0.11 mm and (b) 0.12 mm
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(a) gPr model predictions of relative density

(b) gPr model predictions of Yield strength 
Fig. 4. results of multi-objective optimization using ga without time constraint and optimal locations of the process parameters, red dot means 
Pareto optimal points: (a) relative density and (b) Yield strength
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Fig. 5. results of time-constrained multi-objective optimization using ga and optimal locations of the process parameters, red dot means the 
Pareto optimal points
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